
CF68KLib

68K Emulation
Library for ColdFire

Copyright © 1998-2000 MicroAPL Ltd. All rights reserved.

Important Note:

CF68KLib is a proprietary product of MicroAPL Ltd. MicroAPL makes no

warranties in respect of the suitability of CF68KLib for any particular purpose,

and accepts no liability for any loss arising out of the use of CF68KLib. The

person or persons making use of this document and the CF68KLib emulation

library must make the final evaluation as to their suitability and correctness for a

particular application.

MicroAPL reserves the right to alter the specification of the product without

warning.

MicroAPL welcomes comments and suggestions. These and any error reports

should be sent using the feedback forms available on our web site:

http://www.microapl.co.uk

MicroAPL, CF68KLib and PortAsm are trademarks of MicroAPL Ltd.

Motorola and ColdFire are registered trademarks of Motorola, Inc.

All other tradenames, trademarks and registered trademarks are the property of

their respective owners.

Version 2.0 December 2000

Updated versions of this manual, supporting
documentation, and information on our range of
porting tools and services can be downloaded

from our web site:

http://www.microapl.co.uk

Introduction . 7

What is the CF68KLib Emulation Library? . 9

Applications for CF68KLib . 9

Supported Source Processors . 11

Supported Target Processors . 12

Building CF68KLib . 12

Customising CF68KLib . 12

CF68KLib requires Version 3 or later of the ColdFire core 13

About this manual . 14

Understanding CF68KLib . 15

What is different in ColdFire? . 17

Introduction . 19

Principles behind the differences . 20

Missing addressing modes . 21

Missing instructions . 22

Long-word forms only . 23

Instructions which act only on registers, not on memory 23

Restrictions on addressing modes for particular instructions 23

Miscellaneous Omissions . 24

Instructions which behave differently from the 680x0

equivalent . 25

New Instructions in ColdFire Version 4 Architecture 27

Simplification of the supervisor programming model 27

Principles of CF68KLib's Operation . 29

Handling Unimplemented Instructions . 31

Handling Supervisor Mode Instructions . 32

Handling Supervisor Mode Instructions - an annotated

example . 33

Using CF68KLib . 37

Creating the Source of CF68KLib . 39

The 'embuild' application . 41

Creating the Source Code of CF68KLib . 42

Invoking the 'embuild' application . 43

Using CF68KLib . 49

Initializing CF68KLib . 51

The Register Parameter Area . 53

Running 680x0 Code . 54

Callbacks to the front-end during 680x0 code execution 55

Callbacks to handle 680x0 Exceptions . 56

Callbacks to Handle Problem Instructions . 63

Callbacks when a Control Register is Read or Modified 64

Callback to handle problems during emulation 65

Miscellaneous . 67

Handling Problematic Instructions . 69

Instructions which can cause problems . 71

 Handling 68020 Multiply/Divide Instructions 72

Index . 73

Introduction

What is the CF68KLib Emulation Library?

Although the ColdFire architecture is derived from and has much in common with

the 68000 family, it is not possible simply to take a 680x0 binary and execute it on

a ColdFire board. A large number of common 680x0 instructions are not supported

by the ColdFire processor and would give rise to'Illegal Instruction' or 'Address

Error' exceptions.

CF68KLib is a 680x0 emulation library which enables you to run 680x0 binaries

largely unmodified under ColdFire. It achieves this by catching the exceptions

caused by unimplemented 680x0 instructions, performing the same function as the

instruction, and then adjusting the stacked program counter to resume execution

at the following instruction.

Why 'largely unmodified' ? The assumption underlying the successful operation of

CF68KLib is that all 680x0 instructions either behave exactly the same on

ColdFire, or trap out so that the emulation library can deal with them. There are a

very few 680x0 instructions for which this is not true, and you may have to make a

few minor changes to your 680x0 code before it runs successfully on ColdFire.

However you should find that the effort involved is very small.

Applications for CF68KLib

The CF68KLib emulation library can be used in one of two versions, User Mode

and Supervisor Mode:

• You should use the User Mode form when your target system will basically be

running native ColdFire code but you need to run an existing 680x0 application-

level binary.

• You should use the Supervisor Mode form when you wish to run a complete

680x0 operating system under emulation.

User Mode Library

In this form CF68KLib will install its own handlers for the 'Illegal Instruction' and

'Address Error' exceptions which can occur when unimplemented 680x0

instructions are executed on ColdFire. These handlers will perform the same

function as the missing instruction and then return execution to the instruction

which follows. The existence of CF68KLib is thus transparent to your application

code except that it can incur a substantial performance penalty.

It is occasionally necessary to make minor modifications to your 680x0 program

before it can be run under CF68KLib. This is because there are a very small

number of 680x0 instructions which are also legal in ColdFire (and hence do not

cause an exception) but which do not behave identically. As an example, the

MULS instruction executes identically under ColdFire except that it does not set

the Overflow flag in the condition codes register.

Supervisor Mode Library

The ColdFire supervisor model is very different to the 680x0. For example there

is only one stack pointer instead of separate User and Supervisor stacks, and

the format of an exception stack frame is different. This means that although

instructions such as TRAP and RTE are implemented in the ColdFire

architecture, a 680x0 binary such as an operating system would be unlikely to

work correctly. For this type of problem you can use the Supervisor Mode form

of CF68KLib.

In the Supervisor Mode form, the CF68KLib library takes over the handling of all

ColdFire exceptions in order to implement a complete 680x0 virtual machine.

The presence of CF68KLib is transparent to your 680x0 code, which 'thinks' it is

running on a real 680x0 processor, and you can run an entire 680x0 operating

system including interrupt-driven hardware inside the virtual machine.

Because the Supervisor Mode form of CF68KLib has to take over the handling of

all ColdFire exceptions it is generally not possible to use this form of the library

alongside a native ColdFire operating system, although you can still execute

application-level ColdFire code.

Supported Source Processors

A number of versions of CF68KLib are available which emulate different members

of the 680x0 family:

68000

68010

68020

68030

68040

68060

CPU32

CPU32+

Each version is a very faithful emulation library of the particular 680x0 processor’s

instruction set, including both user- and optionally supervisor-mode instructions.

Note however that CF68KLib does not include support for Floating Point (FPU) or

Memory Management (MMU) instructions. Thus, for example, the 68040 version

effectively emulates an LC68040 processor.

The 68000 and 68010 versions of CF68KLib depart slightly from the behaviour of

the original processor when accessing memory. When the 68000-processor

version of CF68KLib accesses memory it uses the full 32-bit 68K address

(adding the 32-bit base address offset), rather than the 24-bit address which a

real 68000 would use. In this respect, it is more like a later member of the 680x0

family than the original 68000 processor. In addition, the 68000 and 68010

versions of CF68KLib will not signal an exception on unaligned memory

accesses (e.g. reading a 16- or 32-bit value at an odd address). In this respect

they behave like a 68020 or higher processor.

Supported Target Processors

CF68KLib is available for the ColdFire Version 3 and Version 4 cores. You must

choose the appropriate version of the library for the ColdFire core you are using

because the behavior of the two cores when trapping on certain unsupported

680x0 instructions is very slightly different

Building CF68KLib

Because so many variants of the CF68KLib emulation library exist, the library is

not supplied in binary - or even source code - form. Instead a single 'embuild'

executable application is provided which you run to create the source code for

the library you require. For example, the command:

embuild -proc 68020 -a diab -core v4 -lib -user cf68klib_020.s

will create a source file 'cf68klib_020.s' containing the source of the User-Mode

68020 version of CF68KLib in a form that can be assembled with the Diab-Data

ColdFire assembler. The version created is suitable for use with a Version 4

ColdFire core.

Customising CF68KLib

Functionally, each version of CF68KLib is divided into two parts - code which you

may wish to customize for your particular application; and code which you will

never normally need to touch. In order to achieve this separation, the source code

is divided into two files which you generate and assemble separately and then link

together.

The code which you may wish to customize is located in a 'front-end' source file

which you first generate using embuild as follows, and then modify as required:

embuild -proc 68020 -core v3 -a diab -frontend -super frontend_020.s

This file contains sample code to initialize the CF68KLib library, together with a

number of customizable routines…

As an example, consider the case where you are using the Supervisor-Mode

version of CF68KLib to run an entire 680x0 operating system under emulation.

The supervisor-mode version of the front-end file contains a customizable routine

called 'cf68k_bus_error' which is called when a bus error exception occurs. You

can either elect to handle the bus error in this routine, or pass it on to the 680x0

operating system's bus-error handler.

The main body of CF68KLib is contained in the back-end library file which you will

not usually need to modify. It is also generated using embuild, e.g:

embuild -proc 68020 -a diab -lib -super cf68klib_020.s

CF68KLib requires Version 3 or later of the ColdFire core

Note that in order for the CF68KLib library to handle unimplemented 680x0

instructions they must cause an exception. For this reason CF68KLib can only

be used with Version 3 or later of the ColdFire core, because earlier cores do not

trap out on unimplemented instructions. In addition you must specify whether you

are using the Version 3 or Version 4 core when generating the library by using

the “-core” command-line option.

13 CF68KLib Emulation Library

About this manual

This manual is divided into two parts. Part 1 discusses the principles behind

CF68KLib's operation, and explains how it handles the issues which arise in

executing 680x0 instructions on ColdFire. Part 2 details how to use CF68KLib in

practise, how to build different versions of the library to emulate different 68000-

family processors, and how to customise it to achieve different effects.

14 CF68KLib Emulation Library

Chapter

Part 1

Understanding CF68KLib

15 CF68KLib Emulation Library

16 CF68KLib Emulation Library

Chapter 1 What is different in ColdFire?

18 CF68KLib Emulation Library

1.1 Introduction

Although the ColdFire architecture is closely related to the 680x0, there are

many simplifications to the instruction set which mean that 680x0 assembler

code may require substantial modifications. In this chapter, we summarize the

main differences between the 680x0 instruction set and ColdFire.

Nearly all of the differences are omissions from the 680x0 instruction set and

addressing modes. This means that (with a few important exceptions detailed

later), a 680x0 instruction which is implemented in ColdFire behaves in exactly

the same way under the two architectures. In fact, almost all user-level (and

much supervisor-level) ColdFire code can be run unchanged on a 68020 or later

680x0 processor. The converse, however, is not the case.

In outline, the main omissions fall into five categories:

• Missing addressing modes

• Missing instructions

• Non-availability of word- and byte-forms of nearly all arithmetic and logical

instructions

• Many instructions act only on registers, not on memory

• Restrictions on available addressing modes for particular instructions

• Simplification of the supervisor-level programming model

In addition to these omissions, the ColdFire version 4 core includes some new

instructions which CF68KLib optionally makes use of - in particular MVS (move-

with-sign-extend) and MVZ (move-with-zero-extend).

19 CF68KLib Emulation Library

1.2 Principles behind the differences

In order to understand the ColdFire instruction set in relation to that of the 680x0,

it helps to have an appreciation of why the simplifications have been made. The

philosophy behind ColdFire is influenced by the success of RISC processors in

providing high performance - for a given degree of chip complexity - by

eliminating seldom-used instructions and complex addressing modes, and by

regularizing the instruction set to make it easier for the hardware to optimize

despatch of the instruction stream.

However, standard RISC processors such as the PowerPC achieve high

performance at the expense of low code density, in part because all instructions

are the same width (generally 4 bytes) and also because only very simple

addressing modes are available. In addition, RISC processors do not allow

direct modification of memory locations; all memory reads and writes have to go

via registers. This all means that programs compiled for RISC processors tend

to be substantially larger than those compiled for CISC architectures such as the

680x0. This penalty does not greatly matter for powerful servers or workstations

with 32MB or more of RAM, but for some embedded applications it can be a

significant disadvantage, both in terms of system cost and power consumption.

The ColdFire architecture - which Motorola characterizes as “Variable-Length

RISC” - aims to share many of the speed advantages of RISC, without losing too

much of the code density advantages of the 680x0 family. Like most modern

processor architectures, it is optimized for code written in C or C++, and

instructions which are not frequently generated by compilers are amongst those

removed from the instruction set. Some of the complex addressing modes -

again not important for compilers - are eliminated, and the additional hardware

complexities involved in supporting arithmetic operations on bytes and words

also disappear. In order to regularize the instruction stream, all ColdFire

instructions are either 2, 4 or 6 bytes wide; this is why certain combinations of

source and destination operands are not available.

20 CF68KLib Emulation Library

1.3 Missing addressing modes

The ColdFire addressing modes are quite similar to those of the original 68000,

i.e. without the extensions introduced in the 68020 and later processors, but with

some differences in indexed addressing. Compared with a 68020 or later

processor, the comparison is as follows:

Fully supported:

Data Register Direct D0 √

Address Register Direct A3 √

Address Register Indirect (A5) √

Post-increment (A1)+ √

Pre-decrement -(A7) √

Displacement (16-bit displacement) 100(A2) √

PC Displacement (16-bit displacement) 100(PC) √

Absolute Short ($100).W √

Absolute Long ($220E0).L √

Immediate #3 √

Partially supported:

Indexed (10,A2,D3.L*4) (√)

PC Indexed (0,PC,D2.L*2) (√)

The restrictions on these two modes are:

(a) The displacement constant is 8-bit only;

(b) “Zero-suppressed” registers are not supported;

(c) The Index register can only be handled as a Long. Word-length index

registers are not supported.

(d) The scale factor must be 1, 2, or 4. Scale factors of 8 are not supported.

21 CF68KLib Emulation Library

Not implemented at all:

Memory-indirect post-indexed ([12,A3],D2*W,1000) X

Memory-indirect pre-indexed ([12,A3,D2*W],1000) X

PC-indirect post-indexed ([12,PC],D2*W,1000) X

PC-indirect pre-indexed ([12,PC,D2*W],1000) X

Note that further restrictions may be imposed on the addressing modes

supported by particular instructions, even if a particular addressing mode is itself

available on ColdFire.

1.4 Missing instructions

A number of instructions are not implemented at all under ColdFire. These

include:

DBcc, EXG, RTR, RTD, CMPM,
ROL, ROR, ROXL, ROXR, MOVE16
ABCD, SBCD, NBCD
BFCHG, BFCLR, BFEXTS, BFEXTU
BFFFO, BFINS, BFSET, BFTST
CALLM, RTM, PACK, UNPK
CHK, CHK2, CMP2, CAS, CAS2, TAS (supported in V4 core),
BKPT, BGND, LPSTOP, TBLU, TBLS, TBLUN, TBLSN
TRAPV, TRAPcc, MOVEP, MOVES, RESET
ORI to CCR, EORI to CCR, ANDI to CCR

In addition, DIVS and DIVU (with some differences from the 680x0 equivalents)

are available on some ColdFire processors but not others. MULU and MULS

producing a 64-bit result are not implemented, but 16 x 16 producing 32-bit, and

32 x 32 producing (truncated) 32-bit, are available.

22 CF68KLib Emulation Library

1.5 Long-word forms only

Most arithmetic and logical instructions can act on Long words only. This applies

to:

ADD, ADDA, ADDI, ADDQ, ADDX, AND, ANDI, ASL, ASR
CMP*, CMPA, CMPI*, EOR, EORI, LSL, LSR,
NEG, NEGX, NOT, OR, ORI,
SUB, SUBA, SUBI, SUBQ, SUBX

*For the ColdFire Version 4 core the CMP and CMPI instructions are fully
supported.

MOVEM.W has also been removed from the instruction set.

In fact, the only instructions which do act on the full set of byte, word and long

operands are CLR, MOVE and TST. EXT.W, EXTB.L and EXT.L survive, as do

MULx.W and MULx.L

1.6 Instructions which act only on registers, not on memory

Some arithmetic instructions cannot act directly on memory - the destination

must be a register. This applies to:

ADDI, ADDX, ANDI, CMPI, ASL, ASR, LSL, LSR,
NEG, NEGX, NOT, EORI, ORI, SUBI, SUBX, Scc

Note that ADDQ and SUBQ can act directly on memory.

1.7 Restrictions on addressing modes for particular instructions

Even where a particular memory addressing mode does exist in ColdFire, some

instructions are subject to further restrictions. Often, this is because of the limit

23 CF68KLib Emulation Library

of six bytes as the maximum length of a single instruction. Specific restrictions

include:

(a) Some combinations of addressing modes for MOVE are disallowed:

• If the source addressing mode is Displacement or PC Displacement, the

destination addressing mode cannot be Indexed or Absolute.

• If the source addressing mode is Indexed, PC–Indexed or Absolute, the

destination addressing mode cannot be Displacement, Indexed or Absolute.

• For the Version 2 and Version 3 cores, if the source addressing mode is

Immediate the destination addressing mode cannot be Displacement.

• For the Version 4 core, if the source addressing mode is Immediate and the

operation is a 32-bit move, the destination addressing mode cannot be

Displacement.

(b) The addressing modes for MOVEM are restricted to only Displacement and

Indexed - no Pre-decrement or Post-increment!

(c) For BTST, BSET, BCLR and BCHG, if the source operand is a static bit number,

the destination cannot be Indexed or Absolute memory.

1.8 Miscellaneous Omissions

There are a few miscellaneous omissions for specific instructions:

• LINK.L is not supported

• MOVE to CCR/SR: Source must be Immediate or Data Register

• MOVE from CCR/SR: Destination must be data register

24 CF68KLib Emulation Library

• For the Version 2 and 3 cores, BSR and Bcc accept only an 8- or 16-bit

displacement. In the Version 4 core, BSR and Bcc accept 8-, 16- or 32-bit

displacement as in most 680x0 processors.

1.9 Instructions which behave differently from the 680x0 equivalent

In almost all cases, an instruction/addressing mode which does exist in ColdFire

behaves exactly like its 680x0 equivalent, which makes it easy for experienced

680x0 programmers to understand ColdFire code. It also means that code

written for ColdFire can generally run unchanged on a 680x0 processor. If the

instruction/addressing mode does not exist in ColdFire the processor will

normally take an illegal instruction or address error exception (or a line-F

exception for a few instructions), and the CF68KLib emulation library will fix up

the problem.

However, there are a few subtle cases where the ColdFire instruction is not

exactly the same as its 680x0 counterpart and does not cause an exception.

68020 multiply/divide instructions don't trap out

The most significant difference between ColdFire and 680x0 is that some of the

multiply/divide instructions introduced with the 68020 do not behave the same

and do not cause an exception. The following instructions are affected:

MULS.L <ea>,Dh:Dl (Signed multiply: 32x32 -> 64)

MULU.L <ea>,Dh:Dl (Unsigned multiply: 32x32 -> 64)

DIVS.L <ea>,Dr:Dq (Signed divide: 64/32 -> 32r:32q)

DIVSL.L <ea>,Dr:Dq (Signed divide: 32/32 -> 32r:32q)

DIVU.L <ea>,Dr:Dq (Unsigned divide: 64/32 -> 32r:32q)

DIVUL.L <ea>,Dr:Dq (Unsigned divide: 32/32 -> 32r:32q)

25 CF68KLib Emulation Library

If your code uses any of these you will have to make at least some changes to

your code. Strategies for dealing with these instructions are examined in Section

7.

MULU and MULS do not set the overflow Bit

The multiply instructions (MULU and MULS) do not set the overflow bit. This

means that a 680x0 code sequence which checks for overflow on multiply may

run under ColdFire, but give incorrect results.

ASL and ASR do not set the overflow Bit

ASL and ASR also differ in that they do not set the overflow bit - but this is less

likely to cause problems for real programs!

MOVE.B <ea>,-(A7) and MOVE.B (A7)+,<ea> only change the stack pointer by one

Another potential problem is that the instruction "MOVE.B <ea>,-(A7)" behaves

differently under ColdFire. On a 680x0 chip, the A7 register is first decremented

by two and the byte-sized operand is then pushed; in ColdFire the A7 register is

only decremented by one. The "MOVE.B (A7)+,<ea>" instruction is similarly

affected. This means that a 68000 code sequence such as the following would

give incorrect results:

move.l d0,-(a7)
move.b d1,-(a7)
...
move.l 2(a7),d0 ; ColdFire gets wrong value

26 CF68KLib Emulation Library

1.10 New Instructions in ColdFire Version 4 Architecture.

In Version 4 of the ColdFire architecture as well as re-introducing some instructions

present in 680x0 but missing from earlier ColdFire cores (e.g. CMP.B/W, BRA.L, BSR.L,

Bcc.L), there are two new instructions which CF68KLib can make use of:

MVS <ea>,Dn Move byte or word and sign-extend to 32-bits in Dn

MVZ <ea>,Dn Move byte or word and zero-extend to 32-bits in Dn

Use of the new instructions is enabled if you specify the command-line option

–core v4

It is possible that you plan to use a standard 680x0 assembler to assemble the

source of CF68KLib. In this case the use of the MVS and MVZ instructions will

cause a problem since they are not part of the 680x0 instruction set. To solve

this you can specify the command-line option -mnem68k, which causes the

embuild utility to generate a library in which every MVS and MVZ has been

replaced by a DC directive yielding the same opcode value, e.g.

dc.l $77680002 ; mvs.w 2(a0),d3

1.11 Simplification of the supervisor programming model

Various members of the 68000 family have different register sets available at the

supervisor level. The most important simplification in ColdFire’s supervisor-level

model is that there is only one stack pointer, shared for all code including

interrupts, supervisor-level services, and user code. It follows from this that, on

ColdFire, it is never safe to write below the stack, since any interrupt which

occurs would overwrite the stored data. (Writing below the stack, though not

recommended, is possible in some 680x0 systems in user mode, because

interrupts cause a switch to the Interrupt or Supervisor Stack Pointer). A further

issue is that ColdFire processors automatically align the stack to a four-byte

27 CF68KLib Emulation Library

boundary when an exception occurs, which can cause problems if code is

reading or writing at a fixed offset from the stack pointer. In fact, it is strongly

recommended (for performance reasons) that the ColdFire stack should be kept

long-word aligned at all times.

28 CF68KLib Emulation Library

Chapter 2 Principles of CF68KLib's Operation

30 CF68KLib Emulation Library

2.1 Handling Unimplemented Instructions

Many 680x0 instructions also exist in ColdFire and use the same opcodes.

However, certain opcodes corresponding to legal 680x0 instructions are not valid

for ColdFire.

A 680x0 opcode may be invalid in ColdFire because it corresponds to an

instruction which does not exist - for example ADD.B or RTD. Such opcodes will

cause the ColdFire processor to take an 'Illegal Instruction' exception. (A few

unimplemented instructions such as MOVE16 cause a line-F exception).

Other 680x0 opcodes are invalid because they correspond to instructions which

exist in ColdFire but for which the addressing mode specified is invalid. For

example the instruction "NEG.L (A0)" would be illegal because the ColdFire

version of the NEG instruction only allows a data register as its operand. Such

opcodes will cause the ColdFire processor to take an 'Address Error' exception.

CF68KLib installs its own routines to handle these exceptions. When an

unimplemented 680x0 instruction causes an exception the handler will decode

the opcode of the instruction and dispatch to a small subroutine where a series

of legal ColdFire instructions achieve an equivalent effect.

In the example of "NEG.L (A0)" above, CF68KLib would first decode the opcode

to determine that it was a NEG.L instruction. It would then decode the

addressing mode to determine that it was (A0). Finally, it would read the operand

from (A0), negate it, and write it back, setting the condition bits appropriately

before returning to the instruction following the NEG.

31 CF68KLib Emulation Library

2.2 Handling Supervisor Mode Instructions

The ColdFire chip's Supervisor-level architecture is simpler than 680x0. For

example, ColdFire only has a single stack pointer instead of two for the 68000,

(and three for the 68020). Exception stack frames have a different format, and

the stack pointer is always aligned to a four-byte boundary before an exception

frame is created. These differences mean that without the aid of CF68KLib you

could not simply take a 680x0 Operating System - even if it contains only legal

ColdFire instructions - and expect it to run on a ColdFire board.

The Supervisor Mode form of CF68KLib allows you to run a whole 680x0

operating system under emulation. To do this it surrounds the 680x0 code with

an entire 'virtual machine' which hides the differences in architecture. To achieve

this CF68KLib uses a number of techniques:

• CF68KLib takes over the 'Illegal Instruction', 'Address Error', 'Line-A' and 'Line-

F' exceptions and fixes up unimplemented user-mode 680x0 instructions in the

manner described above.

• In order to coerce exception stack frames into 680x0 format, CF68KLib installs

its own handlers for all ColdFire exceptions. When an exception such as a TRAP

is taken the CF68KLib handler will modify the exception stack frame so that it is

in the correct format and then pass control to the original 680x0 trap handler.

• Since exception frames are now in 680x0 format, CF68KLib needs to take

steps to regain control before an RTE instruction (which is also legal in ColdFire)

tries to execute with a frame format that would be invalid for ColdFire. To do this

it runs the 680x0 program in ColdFire User Mode. In user mode, supervisor

instructions like RTE will cause a privilege violation exception. By catching this

exception CF68KLib can unpick the 680x0 exception frame and hence pass

control back to the appropriate address.

32 CF68KLib Emulation Library

• Certain 680x0 registers have no equivalent in ColdFire - for example the 68020

has three stack pointers, the USP, the ISP and the MSP. Some instructions such

as RTE may cause a change to the active stack pointer; others such as "MOVEC

to USP" may alter an inactive stack pointer. CF68KLib keeps track of the current

contents of these unmapped registers in its private data area, and when a

privileged instruction such as MOVEC or RTE is executed, the library will

use/update its private copies. For example, when the 680x0 code switches stack

from the SSP to the USP, the CF68KLib library saves away the current state of

A7 into the location it uses to track the SSP, and reloads A7 from the location

where it stored the USP value.

2.3 Handling Supervisor Mode Instructions - an annotated example

As a demonstration of how CF68KLib runs 680x0 operating-system code,

consider the following annotated example which is intended to represent a real

68020 operating system in miniature…

On a real 68020 processor, this code would be called in Supervisor Mode. It sets

up a user stack, switches to user mode, and then enters a loop to display the

string "Hello world" using the services of a TRAP #0 handler:

; Set up user stack
lea user_stack_top,a0 ; [1]
movec a0,usp ; [2]

; Switch to user mode
 move #0,sr ; [3]

33 CF68KLib Emulation Library

; Now in 68020 user mode. Loop to write string
; continuously

loop:

pea hello_string ; [4]
trap #0 ; [5]
dc.w $1 ; In line selector: Write String
addq.l #4,a7 ; [6]
bra loop ; [7]

hello_string:
.byte "Hello world", 13, 10, 0

user_stack:
.space 10000

user_stack_top:

; TRAP #0 handler
trap0:

movem.l a0-a1,-(a7) ; [8]
move.l 10(a7),a1 ; [9]
cmp.w #$1,(a1)+ ; [10]
bne.s trap0_done ; [11]
movec.l usp,a0 ; [12]
move.l (a0),a0 ; [13]
bsr write_string ; [14]

trap0_done:
move.l a1,10(a7) ; [15]
movem.l (a7)+,a0-a1 ; [16]
rte ; [17]

Under ColdFire you would call CF68KLib to begin executing this 'Operating

System'. CF68KLib will set its internal representation of the 680x0 Status

Register to Supervisor Mode, then pass control to the instruction at line [1] with

the ColdFire processor in real user mode.

34 CF68KLib Emulation Library

Because the ColdFire processor is in user mode, line [2] will cause a privilege

violation trap. CF68KLib stores the value in A0 into its internal representation of

the USP and then resumes execution.

Line [3] also causes a privilege violation trap. CF68KLib will store '0' into its

internal copy of the 680x0 Status Register. It will detect that a change from

supervisor mode to user mode has occurred, store the current A7 in its internal

SSP value, and reload A7 from the internal representation of USP that was set

by line [2].

Line [5] executes a TRAP instruction. This is a legal ColdFire instruction, but the

TRAP exception frame created is different to the 68020. Notice that the TRAP is

followed by an in-line selector representing the service requested from the

operating system - in our case a request to write a string.

When Line [5] executes the TRAP, the exception is initially handled by

CF68KLib. This converts the ColdFire-format exception frame into the format

used by the 68020, and then passes control to the first instruction of the 68020

code's trap handler.

Within the trap handler itself, line [9] is picking up the program counter value

from the 68020 exception stack frame - a pointer to the trap selector word. In our

simple example it just checks for selector=1, but a real operating system would

be much more complex. The program counter is updated to skip the selector at

line [15].

At lines [12] and [13] the trap handler picks up the pointer to the string to write,

which was pushed onto the user stack. Line [12] will cause a privilege violation

trap which CF68KLib handles by copying its internal copy of USP into A0.

At line [17] the 68020 trap handler finishes by executing an RTE. Since this is a

35 CF68KLib Emulation Library

privileged instruction it will cause a privilege violation trap because the ColdFire

processor is in real User Mode. The CF68KLib exception handler will unpick the

68020-format exception frame and emulate an RTE in order to pass control back

to the example code at line [7].

Finally, note that lines [8] and [16] are variants of the MOVEM instruction which

are not legal in ColdFire. These cause an address error exception and the

CF68KLib library handles this in order to emulate the behavior of the MOVEM

using only legal instructions.

36 CF68KLib Emulation Library

Chapter

Part 2

Using CF68KLib

37 CF68KLib Emulation Library

38 CF68KLib Emulation Library

Chapter 3 Creating the Source of CF68KLib

40 CF68KLib Emulation Library

3.1 The 'embuild' application

There are a large number of potential variants of the source code of CF68KLib:

• Different versions of the library exist to support different members of the 680x0

family: 68000, 68010, 68020, 68040, 68060, CPU32 and CPU32+.

• Different versions exist to support the Version 3 and Version 4 ColdFire cores

which behave slightly differently when trapping on certain illegal 680x0

instructions.

• The library can exist in one of two forms - User Mode (for running 680x0

applications in a ColdFire envionment), and Supervisor Mode (for running a

complete 680x0 operating system under emulation).

• The library is divided into two source files - the main body of the emulation

code, and a customizable front end.

• Source code may need to be in a form suitable for one of a number of

supported ColdFire assemblers - Diab-Data, Microtec , GNU or Metrowerks.

Because so many variants of the CF68KLib emulation library exist, the library is

not supplied in binary - or even source code - form. Instead a single 'embuild'

executable application is provided which you run to create the source code for

the library and front end you require. For example, the command:

embuild -core v3 -user -proc 68020 -lib -a diab cf68klib_020.s

41 CF68KLib Emulation Library

will create a source file 'cf68klib_020.s' containing the source of the User-Mode

68020 version of the main CF68KLib emulation library in a form that can be

assembled with the Diab-Data ColdFire assembler. The version generated is

suitable for use with the ColdFire version 4 core.

3.2 Creating the Source Code of CF68KLib

To create the source code of CF68KLib you should take the following steps: (The

command line options are explained in detail in the next section)

• Determine whether you’re planning to use the ColdFire version 3 or version 4

core, because you’ll need to generate the appropriate library (either the

–core v3 or –core v4 option).

• Decide whether you need the User Mode or Supervisor Mode form of the

emulation library (either the -user or -super option).

• Decide which member of the 680x0 family you wish to emulate (the -proc

option).

• Use 'embuild' to create a file containing the main body of the library code (by

specifying the –lib option).

• Use 'embuild' again to create a customizable front-end file (by specifying the

–frontend option).

• Edit the front-end file to modify the initialization code and customize

CF68KLib's behavior as described below.

• Assemble the two files and link them together with your ColdFire application. If

you are using a standard 680x0 assembler (as opposed to a true ColdFire

assembler) to build the Version 4 core library it will fail on the MVS and MVZ

42 CF68KLib Emulation Library

instructions. See page 27 for use of the -mnem68k option to circumvemt this.

3.3 Invoking the 'embuild' application

The embuild executable is used to generate the source code of CF68KLib.

The command line syntax is:

embuild [options...] filename

where filename is the name of the source file to be created. The command-

line options are as follows:

-a <assembler>

Specifies which ColdFire assembler syntax to use for the generated

code. The valid options are:

 diab Diab Data’s das (default)

 gnu Gnu gas

 mri Microtec Research

You may also need to specify one of the other output-syntax options

such as –out_cmp_reversed or –out_syntax.

-core <v3 | v4>

Specfy whether you wish to generate a version of CF68KLib for use

with the version 3 or version 4 ColdFire core.

-frontend

Generate front-end code. The file created will contain sample source

code for the customizable front-end to CF68KLib. (You may only specify

one of -frontend or -lib).

43 CF68KLib Emulation Library

-lib

Generate source code for the main CF68KLib emulation library. (You

may only specify one of -frontend or -lib).

-mnem68k

Use only valid 680x0 mnemonics. This option is useful if you are

assembling the source code using a 68K assembler which doesn not

support ColdFire instructions such as MAC or MVS. These will be

converted into hexadecimal form, e.g. DC.L $nnnnnnnn

 -omit <list>

Omit unwanted instructions. This option is useful if you are tailoring

CF68KLib to have a small footprint and you know that the 680x0 code

you are running does not make use of certain instructions. For example

if you know that your code does not use the ABCD, NBCD or SBCD

instructions you can omit the library code to handle these - they will be

treated as illegal instructions if they are encountered.

The <list> parameter allows you to specify a comma-separated list of

one or more of the following values:

 bcd - Omit BCD instructions & lookup tables

 bitfield - Omit 68020 bitfield instructions (BFCHG, etc) &

 lookup tables

 64bit - Omit 68020 64-bit multiply/divide instructions &

 support routines

-out_cmp_reversed

Some 680x0/ColdFire assemblers swap round the operands to

compare (cmp cmpa cmpi) instructions, i.e. they expect

44 CF68KLib Emulation Library

cmp Dn,<ea>

rather than the

cmp <ea>,Dn

form specified in the Motorola 680x0 documentation. This option

causes 'embuild' to reverse the operands to CMP instructions in the

output file to be compatible with this idiosyncracy. It is typically used in

conjunction with the –out_syntax munix option.

-out_reg_prefix

Causes 'embuild' to place a % prefix in front of register names in the

generated code. The default is off unless you specify –a gnu. Register

names are always prefixed with a % character if you specify

–out_syntax munix.

-out_syntax <standard|mit|munix>

This option allows you to specify that the output syntax for ColdFire

instructions should be modifed to use the ‘MIT’ or ‘Motorola Unix’

conventions rather than the standard Motorola mnemonics and syntax.

-proc <type>

Specify the processor you wish to emulate. The valid options are:

 68000 (default)

 68010

 68020

 68030

 68040

 68060

 cpu32

 cpu32+

Note that CF68KLib does not include support for Floating Point (FPU)

45 CF68KLib Emulation Library

or Memory Management (MMU) instructions. Thus, for example, the

68040 version effectively emulates an LC68040 processor.

-super

Generate the Supervisor-Mode form of CF68KLib with support for

operating system code. (You may only specify one of –super or –user).

-user

Generate the User-Mode form of CF68KLib (default). (You may only

specify one of –super or –user).

46 CF68KLib Emulation Library

Chapter

48 CF68KLib Emulation Library

4 Using CF68KLib

49 CF68KLib Emulation Library

50 CF68KLib Emulation Library

4.1 Initializing CF68KLib

Before running any 680x0 code, you must initialize CF68KLib by calling its

cf68k_initialize routine. This routine takes one parameter: A0 must

point to an area of 1024 bytes of memory which CF68KLib can use as its private

data area.

The front-end file generated by 'embuild' contains some sample initialization

code which demonstrates how this may be done:

.text
sample_initialisation_code:

lea library_data_area,a0
jsr cf68k_initialize
...

; Memory for library's private use

.data
library_data_area:

.space regList_size

(Note that the front-end defines an equate regList_size for the size of the

area required) .

As part of its initialization process, CF68KLib needs to install its own exception

handlers. For the User-Mode version it only needs to install handlers for the

'Illegal Instruction', 'Address Error', 'Line-A' and 'Line-F' exceptions; for the

Supervisor-Mode version it install handlers for every type of exception.

In order to install a handler, CF68KLib does not directly patch the ColdFire

exception vector table. Instead it calls a routine called

cf68k_install_vector in the front-end file for every vector it wishes to

51 CF68KLib Emulation Library

install. This is useful for two reasons.

• In the User-Mode version of CF68KLib it is expected that the library and the

680x0 application will be running under a native ColdFire operating system. The

OS may disallow the practice of patching directly into the exception vector table,

requiring you to make a system call in order to install vectors.

• The Supervisor-Mode version of CF68KLib will try to install its own handlers for

all types of exception. This includes the interrupt handlers, so that an interrupt-

driven 680x0 operating system can be run under emulation. However, your

ColdFire system may include interrupt sources which you wish to handle with

native ColdFire code. For these interrupt vectors you can ignore CF68KLib's

request to install its own handler.

The routine cf68k_install_vector is called with two parameters - A0

contains the vector to install, and D0 contains the vector number. A typical

implementation is included in the sample front-end file:

; On entry:
; A0 -> exception handler
; D0 = exception vector number

cf68k_install_vector:
move.l a1,-(a7)
move.l #coldfire_vector_base,a1
move.l a0,(a1,d0.l*4)
move.l (a7)+,a1
rts

52 CF68KLib Emulation Library

4.2 The Register Parameter Area

The block of private storage that you pass to CF68KLib during initialization

includes an area used to communicate register values. When the library calls

one of your front-end routines (see below) it will pass you a pointer to this area,

in which it has stored the current contents of the 680x0 registers.

The generated sample front-end file will contain a series of equates which give

offsets into this area for each of the registers:

reg_d0 .equ 0 Data Register D0
reg_d1 .equ 4 D1
reg_d2 .equ 8 D2
reg_d3 .equ 12 D3
reg_d4 .equ 16 D4
reg_d5 .equ 20 D5
reg_d6 .equ 24 D6
reg_d7 .equ 28 D7
reg_a0 .equ 32 Address Register A0
reg_a1 .equ 36 A1
reg_a2 .equ 40 A2
reg_a3 .equ 44 A3
reg_a4 .equ 48 A4
reg_a5 .equ 52 A5
reg_a6 .equ 56 A6
reg_a7 .equ 60 Current (active) Stack Pointer
reg_pc .equ 64 PC - Program Counter
reg_sr .equ 68 SR - Status Register
reg_ccr .equ reg_sr+1 CCR - Condition Codes Register

53 CF68KLib Emulation Library

The remaining fields are only included for the Supervisor-Mode version of

CF68KLib. The exact format depends on which 680x0 processor the library is

emulating; the following example is for the 68020:

reg_usp .equ 72 USP - User Stack Pointer
reg_ssp .equ 76 SSP - Supervisor Stack Pointer
reg_isp .equ reg_ssp (Also known as ISP - Interrupt Stack Pointer)
reg_msp .equ 80 MSP - Master Stack Pointer
reg_vbr .equ 84 VBR - Vector Base Register
reg_sfc .equ 88 SFC - Source Function Code Register
reg_dfc .equ 92 DFC - Destination Function Code Register
reg_cacr .equ 96 CACR - Cache Control Register
reg_caar .equ 100 CAAR - Cache Address Register

All the fields are four bytes, except reg_sr which is two bytes, and reg_ccr

which is a single byte.

4.3 Running 680x0 Code

For the User-Mode version of CF68KLib, once the library has been initialized and

has installed its own handlers for the 'Illegal Instruction' , 'Address Error', 'Line-A'

and 'Line-F' exceptions, no further steps are required before you can begin

executing 680x0 code. Any time that you have a section of 680x0 code you need

to run you can just call it directly.

For the Supervisor-Mode version you must run the 680x0 operating system

inside CF68KLib's 'virtual machine' - the wrapper it puts around your code to

make the ColdFire chip look like a 680x0. You begin executing the 680x0 code

by jumping to the library's 'cf68k_execute' entry point. (NB This is not a

subroutine, and control never returns directly to the caller).

Before jumping to cf68k_execute you must set the initial states that certain

680x0 registers will have once the code starts executing. This is done by

54 CF68KLib Emulation Library

initializing the corresponding fields in the Register Parameter Area.

For example, a 68K operating system is typically started from a reset. When a

real 680x0 processor is reset it will set the Status Register to supervisor state

with the interrupt priority mask set at level seven. The Vector Base Register is

forced to zero, and then the initial values of the Supervisor Stack Pointer and

Program Counter are loaded from address zero in the operating system image.

To simulate this you might perform the following initialization:

sample_initialization_code:

; First initialize the library
lea library_data_area,a0
jsr cf68k_initialize

; Now set the initial state of the 680x0 model

lea operating_system_image,a1
move.l a1,reg_vbr(a0) ; Initialize VBR
move.l 0(a1),reg_ssp(a0) ; Initialize SSP
move.l 4(a1),reg_pc(a0) ; Initialize PC
move.w #0x2700,d0 ; Initialize SR
move.w d0,reg_sr(a0)

; Now go execute the code
jmp cf68k_execute

4.4 Callbacks to the front-end during 680x0 code execution

In order to allow you to customize the behavior of CF68KLib, the library will call

routines in your front end file during the execution of 680x0 code. The callback

routines fit into four categories:

• Routines which are called when CF68KLib emulates a 680x0 instruction which

would cause an exception - for example a divide-by-zero.

55 CF68KLib Emulation Library

• Routines which are called when CF68KLib encounters a 680x0 instruction

which cannot sensibly be emulated because it is hardware-dependent - for

example the CAS instruction.

• Routines which are called just before a 680x0 control register is read, and just

after it is changed.

• A routine which is called when CF68KLib detects an error condition which

means that the emulated code is unlikely to work correctly on ColdFire.

The exact routines depend on which member of the 680x0 family you are

emulating, and on whether you are using the user-mode or supervisor-mode

version of the library. In all cases the generated sample front-end file will contain

sample routines for you to adapt.

CF68KLib will call your front-end routines in real Supervisor Mode with all

interrupts fenced (i.e. with the ColdFire Status Register = 0x2700). You must

make sure that you do not lower the interrupt fence if any of your interrupt

handlers contain 680x0 instructions which are not also legal in ColdFire. Such

instructions would cause an exception, but CF68KLib is still processing the

previous exception and it is not re-entrant.

4.5 Callbacks to handle 680x0 Exceptions

Because the details of how to handle exceptions differ for user-mode and

supervisor-mode versions of CF68KLib, the question is considered separately for

each in turn below:

56 CF68KLib Emulation Library

Handling Exception Callbacks in Supervisor Mode

The Supervisor-Mode form of CF68KLib emulates a complete 680x0 processor,

including support for 680x0-style exception processing. Before the library begins

emulating the processing of most 680x0 exceptions it will call one of the following

routines in your front-end.

Routine Vector Number Exception
cf68k_bus_error 2 Bus Error
cf68k_address_error 3 Address Error
cf68k_illegal_instruction 4 Illegal Instruction
cf68k_zero_divide 5 Zero Divide
cf68k_chk_exception 6 CHK Instruction
cf68k_trapv_exception 7 TRAPV Instruction
cf68k_privilege_violation 8 Privilege Violation
cf68k_trace 9 Trace
cf68k_line_a 10 Line 1010 Emulator
cf68k_line_f 11 Line 1111 Emulator
cf68k_format_error 12 Format Error (68010 and higher)
cf68k_trap0 32 Trap #0 Instruction
cf68k_trap1 33 Trap #1 Instruction
cf68k_trap2 34 Trap #2 Instruction
cf68k_trap3 35 Trap #3 Instruction
cf68k_trap4 36 Trap #4 Instruction
cf68k_trap5 37 Trap #5 Instruction
cf68k_trap6 38 Trap #6 Instruction
cf68k_trap7 39 Trap #7 Instruction
cf68k_trap8 40 Trap #8 Instruction
cf68k_trap9 41 Trap #9 Instruction
cf68k_trap10 42 Trap #10 Instruction
cf68k_trap11 43 Trap #11 nstruction
cf68k_trap12 44 Trap #12 Instruction
cf68k_trap13 45 Trap #13 Instruction
cf68k_trap14 46 Trap #14 Instruction
cf68k_trap15 47 Trap #15 Instruction

For each of these exceptions you can elect to do nothing, in which case

57 CF68KLib Emulation Library

CF68KLib will begin emulating normal exception processing for the exception.

Alternatively, you can elect to handle the exception in your front-end routine and

have CF68KLib resume execution at the instruction after the one which caused

the exception.

The calling conventions are the same for each of these routines:

Parameters:

D0 = 16-bit opcode of instruction which caused exception

A0 -> register parameter area

Return:

D0 = 0 if you wish CF68KLib to begin emulating normal exception processing

D0 = 1 if you handled the exception in the front-end routine

You do not need to preserve any of the ColdFire registers D1–D7/A0–A6 in your

front-end routine.

The ability to override CF68K's default processing of exceptions can be very

useful. For example you might wish to extend the 680x0 instruction set by re-

using unassigned opcodes. The following version of cf68k_line_f would

output the character in D0 to the console every time the processor executed the

opcode 0xF000:

; On entry:
; D0 = opcode which caused exception
; A0 -> register parameter area
; On return:
; D0 = 1 if we handled exception, else 0
cf68k_line_f:

cmp.l #$f000,d0 ; Output char?
bne.s not_char_output

58 CF68KLib Emulation Library

move.l reg_d0(a0),d0 ; Get character
bsr output_character ; Go output it
addq.l #2,reg_pc(a0) ; Bump PC
moveq.l #1,d0 ; Say we handled
rts ; exception

not_char_output:
moveq.l #0,d0 ; Say we didn't handle
rts ; exception

Handling Exception Callbacks in User Mode

When the user-mode form of CF68KLib emulates certain instructions, it is

possible that the instruction being executed would have caused a 680x0

exception. For example, the library emulates theTRAPV instruction which would

cause an exception on a 680x0 processor if the V flag in the Condition Codes

register is set.

If CF68KLib determines that an exception would occur during emulation of a

680x0 instruction, it calls one of the following front-end routines:

Routine Vector Number Exception
cf68k_address_error 3 Address Error
cf68k_illegal_instruction 4 Illegal Instruction
cf68k_zero_divide 5 Zero Divide
cf68k_chk_exception 6 CHK Instruction
cf68k_trapv_exception 7 TRAPV Instruction
cf68k_line_a 10 Line 1010 Emulator
cf68k_line_f 11 Line 1111 Emulator

Which of these routines is called is determined as follows:

• If the 680x0 opcode is a CHK or CHK2 instruction, the routine

cf68k_chk_exception is called.

59 CF68KLib Emulation Library

• If the 680x0 opcode is a TRAPV or TRAPCC instruction, the routine

cf68k_trapv_exception is called.

• If the 680x0 opcode is a divide instruction which is not legal in ColdFire,

cf68k_zero_divide is called. Note that certain instructions such as

'DIVS.W D0,D1' are also legal in ColdFire. They do not cause an illegal

instruction trap, and hence are not handled by CF68KLib. If one of these

instructions does a divide-by-zero, the native ColdFire exception is called.

• If the 680x0 opcode is a Line-F instruction (0xF000 - 0xFFFF),

cf68k_line_f is called.

• If the 680x0 opcode is a Line-A instruction (0xA000 - 0xAFFF),

cf68k_line_a is called. Note however that ColdFire reuses some of the line-

A opcodes for ColdFire-specific instructions such as MAC.

• If the 680x0 opcode is some other opcode that is not legal in ColdFire,

cf68k_illegal_instruction is called. Note however that ColdFire

reuses some illegal 680x0 opcodes for ColdFire-specific instructions.

• If the library catches an 'Address Error' exception and it is genuine (not caused

simply by a 680x0 instruction using an addressing mode that's not supported in

ColdFire), cf68k_address_error is called.

The calling conventions are the same for each of these routines:

60 CF68KLib Emulation Library

Parameters:

D0 = 16-bit opcode of instruction which caused exception

A0 -> register parameter area

Return:

D0 = 1 to say that you handled the exception in the front-end routine

You do not need to preserve any of the ColdFire registers D1–D7/A0–A6 in your

front-end routine.

Unlike the Supervisor-Mode version of CF68KLib, you must handle each of

these exceptions in your front-end, for example by printing an error message and

quitting the application. If your front-end routine is able to fix up the error

condition that caused the exception, you can return with D0 = 1, and CF68KLib

will resume execution at the next instruction.

Modifying Registers during a Callback Routine

When one of the front-end routines such as cf68k_trap0 is called, A0 points

to the register parameter area in which the current values of all the 680x0

registers are stored. You can modify these values as required - for example:

move.l reg_a7(a0),a1 ; Get A7 before TRAP
move.l (a1)+,d0 ; Pop parameter to TRAP
move.l d0,reg_a7(a0) ; Update A7

You should note the following:

61 CF68KLib Emulation Library

Stack Pointers

There are multiple entries connected with stack pointers:

reg_usp - value of the User Stack Pointer (USP)

reg_ssp - value of the Supervisor Stack Pointer (SSP). For the

68020/030/040 version this corresponds to the Interrupt Stack

Pointer (ISP).

reg_msp - value of the 68020/030/040 Master Stack Processor (MSP).

reg_a7 - value of the active stack pointer (USP, SSP or MSP)

The value passed in each of these fields is the value before emulation of 680x0

exception processing begins.

To modify the active stack pointer you should change reg_a7 rather than one

of the other fields.

Program Counter

The value of reg_pc depends on the cause of the exception:

Group 2 Exceptions: CHK, CHK2, Divide-by-zero, TRAP, TRAPV, TRAPcc

reg_pc points to the instruction after the one which caused the

exception.

Group 3 Exceptions: Illegal Instruction, Line–A, Line–F, Privilege Violation.

reg_pc points to the instruction which caused the exception.

Group 4 Exceptions: Trace

reg_pc points to the instruction after the one which caused the

exception.

62 CF68KLib Emulation Library

If you elect to handle the exception within your front-end routine, CF68KLib will

resume execution of the 680x0 code at the instruction whose address is in

reg_pc. It follows that for Group 3 exceptions you must modify this value

before returning.

4.6 Callbacks to Handle Problem Instructions

Certain 680x0 instructions which have no equivalent in ColdFire cannot sensibly

be handled by CF68KLib. These instructions are

• TAS: Test-and-Set instruction used to synchronize several processors (Not

supported for Version 3 core; fully supported for Version 4 core).

• CAS: Compare-and-Swap instruction used in to implement semaphores in a

multi-processor environment.

• CAS2 (68020 and higher): Similar to CAS

• MOVES (68010 and higher): Move Address Space instruction

• BKPT (68020 and higher): Hardware breakpoint instruction

• CALLM (68020 only): Call Module instruction uses external hardware for

access control.

• RTM (68020 only): Similar to CALLM

For each of these instructions, CF68KLib includes a front-end routine:
cf68k_tas (version 3 core only)
cf68k_cas
cf68k_cas2
cf68k_moves
cf68k_bkpt
cf68k_callm
cf68k_rtm

The calling conventions are similar to the exception-handling routines described

above:

63 CF68KLib Emulation Library

Parameters:

D0 = 16-bit opcode of instruction which caused exception

A0 -> register parameter area

Return:

D0 = 1 to say that you handled the exception in the front-end routine

You do not need to preserve any of the ColdFire registers D1–D7/A0–A6 in your

front-end routine.

4.7 Callbacks when a Control Register is Read or Modified

Many of the control registers used in the 680x0 architecture have no direct

equivalent in ColdFire. For example, there is no Source Function Code Register

(SFC).

The supervisor-mode form of CF68KLib has partial support for handling these

registers - it reserves a 32-bit field in the register parameter area for each of

them, and faithfully reads or updates it when emulating MOVEC instructions

such as 'MOVEC D0,SFC' and 'MOVEC SFC,D0'. However, CF68KLib never

modifies any control registers in the real ColdFire processor

The 680x0 control registers which are only partially supported include the

following: SFC, DFC, CACR, CAAR, TC, ITT0, ITT1, DTT0, DTT1, MMUSR,

URP, SRP.

Registers which are fully supported are the User Stack Pointer (USP), Interrupt

Stack Pointer (ISP), Master Stack Pointer (MSP) and Vector Base Register

(VBR).

If you need to do additional processing when the 680x0 control registers are

64 CF68KLib Emulation Library

used or changed, you can do so in a callback routine:

cf68k_read_control_register is called just before a control register

is read via the 'MOVEC <control-register>,Rn' instruction.

cf68k_write_control_register is called just after a control register is

written via the 'MOVEC Rn,<control-register>' instruction.

The parameters to these two routines are the same:

Parameters:

D0 = 32-bit opcode of MOVEC instruction

A0 -> register parameter area

Return:

None.

Note that the parameter passed in D0 is the full 32-bit opcode of the MOVEC

instruction, from which you can determine which control register is affected.

After the front-end routine has been called, CF68KLib will complete the emulation

of the MOVEC instruction.

4.8 Callback to handle problems during emulation

There are a few conditions under which CF68KLib detects that it cannot

successfully emulate a 680x0 instruction. For these instructions the front-end

routine cf68k_emulation_error is called.

65 CF68KLib Emulation Library

Parameters:

D0 = opcode which caused the poblem

D2 = error code (see below)

A0 -> register parameter area

Return:

D0 = 1 to say that you handled the exception in the front-end routine

The possible conditions under which CF68KLib detects an emulation error are as

follows:

• Error code = -1

This occurs if the 680x0 instruction was something like:
move.l -4(a7),(a0,d0.w)

The problem with this instruction is that it is not legal in ColdFire and hence

causes an exception, but by the time CF68KLib is called to begin emulating the

instruction the exception stack frame has over-written the data at -4(a7)

• Error code = -2

This occurs if the 680x0 instruction was something like:

move.l (a7)+,(a0,d0.w)

The problem with this instruction is that the exception does not occur until the

ColdFire processor is half-way through processing it - it succesfully fetches the

source operand from (a7)+ but then discovers that the destination operand is not

legal for ColdFire. It then proceeds to take an exception, but the exception stack

frame over-writes the source operand.

66 CF68KLib Emulation Library

• Error code = -3

This is generated by the User-Mode version of CF68KLib if it calls one of your

front-end routines such as cf68k_zero_divide, but you do not handle the

exception (You don't return with D0 = 1).

4.9 Miscellaneous

You can find out the version number of CF68KLib at any time by calling the

library routine cf68k_get_version:

Parameters:

None

Returns:

D0.L Major version number

D1.L Minor version number

D2.L Revision number

D3.L Processor id:

1 - 68000

2 - 68010

3 - CPU32

4 - CPU32+

5 - 68020

6 - 68030

7 - 68040

8 - 68060

You can also determine this information by looking at the headers of the source

files generated by 'embuild'.

67 CF68KLib Emulation Library

68 CF68KLib Emulation Library

Chapter 5 Handling Problematic Instructions

69 CF68KLib Emulation Library

70 CF68KLib Emulation Library

5.1 Instructions which can cause problems

The principle behind the successful operation of CF68KLib is that all 680x0

instructions are either legal in ColdFire - and behave identically - or cause an

exception which CF68KLib can catch to handle the differences. Unfortunately, as

described in Section 1.9, there are a very few 680x0 instructions for which this is

not the case. To recap:

1. Certain 68020 multiply/divide instructions don't trap out and don't give the

same result:

MULS.L <ea>,Dh:Dl (Signed multiply: 32x32 -> 64)

MULU.L <ea>,Dh:Dl (Unsigned multiply: 32x32 -> 64)

DIVS.L <ea>,Dr:Dq (Signed divide: 64/32 -> 32r:32q)

DIVSL.L <ea>,Dr:Dq (Signed divide: 32/32 -> 32r:32q)

DIVU.L <ea>,Dr:Dq (Unsigned divide: 64/32 -> 32r:32q)

DIVUL.L <ea>,Dr:Dq (Unsigned divide: 32/32 -> 32r:32q)

2. The multiply instructions (MULU and MULS) do not set the overflow bit. This

means that a 680x0 code sequence which checks for overflow on multiply may

run under ColdFire, but give incorrect results.

3. The arithmetic shift instructions (ASL and ASR) also differ in that they do not

set the overflow bit

4. The instructions "MOVE.B <ea>,-(A7)" and "MOVE.B (A7)+,<ea>" only

change the stack pointer by one - on 680x0 the stack pointer would change by
two.

If any of these differences affect the correct operation of your 680x0

program you will need to make changes to the source code.

71 CF68KLib Emulation Library

To handle 2. or 3. or 4. you need to recode the source to avoid using the

problem instruction. CF68KLib does provide support for handling problem 1 - the

wrong behavior of the 68020 multiply/divide routines.

5.2 Handling 68020 Multiply/Divide Instructions

CF68KLib provides full support for the 68020 multiply and divide instructions.

However under normal circumstances these routines would not be called

because the ColdFire processor does not trap out when it encounters the

instructions. What is needed is a way of forcing the ColdFire processor to trap

so that CF68KLib can handle the instruction.

CF68KLib reassigns one of the 16-bit opcodes, 0x4E00, which is not used in

680x0 or ColdFire and which causes an exception. This is used as an 'escape'

telling CF68KLib to emulate the next instruction. For example if your source code

contains:

.short 0x4E00
divsl.l d0,d1:d2

…then CF68KLib will catch the exception caused by the 0x4E00 opcode and

emulate the DIVSL instruction which follows as though it had itself caused the

exception.

72 CF68KLib Emulation Library

Chapter Index

73 CF68KLib Emulation Library

74 CF68KLib Emulation Library

-cmp_reversed 44

-core 43

-Frontend 43

-mnem68k 27

-Mnem68k 44

-Omit 44

-out_cmp_reversed 43

-out_syntax 43, 45

-Proc option 42, 45

-Super 42, 46

-User 42, 46

64-bit multiply/divide instructions 44

680x0 Operating System 32

ABCD 22, 44

Absolute Long 21

Absolute Short 21

Active stack pointer 33

ADDI 23

ADDQ 23

Address Erro 9, 51, 60

Address Error 10, 32

Address Register Direct 21

Address Register Indirect 21

Addressing modes 20-21, 23, 31

ADD 23

ADDA 23

ADDI 23

ADDQ 23

ADDX 23

ANDI to CCR 22-23

ASL 23, 26, 71

ASR 23, 26, 71

Bcc 25

BCD 44

BCHG 24

BFCHG 22

BFCLR 22

BFEXTS 22

BFEXTU 22

BFFFO 22

BFINS 22

BFSET 22

BFTST 22

BGND 22

Bitfield instructions 44

BKPT 22, 63

BSET 24

BSR 25

BTST 24

CAAR 64

CACR 64

Callbacks 55-56

CALLM 22, 63

CAS 22, 63

CAS2 22, 63

Cf68k_address_error 57, 59-60

Cf68k_bkpt 63

Cf68k_bus_error 57

Cf68k_callm 63

Cf68k_cas 63

Cf68k_cas2 63

Cf68k_chk_exception 57, 59

75 CF68KLib Emulation Library

Cf68k_emulation_error 65

Cf68k_execute 54

Cf68k_format_error 57

Cf68k_get_version 67

Cf68k_illegal_instruction 57, 59-60

Cf68k_initialize 51

Cf68k_install_vector 51-52

Cf68k_line_a 57, 59-60

Cf68k_line_f 57-60

Cf68k_moves 63

Cf68k_privilege_violation 57

Cf68k_read_control_register 65

Cf68k_rtm 63

Cf68k_tas 63

Cf68k_trace 57

Cf68k_trapv_exception 57, 59-60

Cf68k_write_control_register 65

Cf68k_zero_divide 57, 59-60

CHK 22, 59, 62

CHK2 22, 59, 62

CLR 23

CMP2 22-23

CMPA 23

CMPI 23

CMPM 22

Command line syntax 43

Compare 44

Condition codes register 10

Control register 65

Data Register Direct 21

DBcc 22

DFC 64

Diab Data 43

Diab-Data 12, 41

Displacement 21

Divide-by-zero 60, 62, 72

DIVS 22, 60

DIVS.L 25, 71

DIVSL.L 25, 71

DIVU 22

DIVU.L 25, 71

DIVUL.L 25, 71

DTT0 64

DTT1 64

Embuild 12, 41, 43

EORI to CCR 22-23

Error code 66

Exception 10, 31

Exception Callbacks 57, 59

Exception stack frame 10, 32

Exception the handler 31

EXG 22

EXT.L 23

EXT.W 23

EXTB.L 23

Front-end 12

Gnu 43

GNU 41

Illegal Instruction 9-10, 31-32

Immediate 21

Inactive stack pointer 33

Indexed 21

76 CF68KLib Emulation Library

Initialization 55

Instruction set 11

Interrupt 10, 52, 56

Interrupt Stack Pointer 64

Interrupts 27

ISP 33, 62, 64

ITT0 64

ITT1 64

Line-A instruction 60

Line-F instruction 60

LINK.L 24

Llegal Instruction 51

LPSTOP 22

LSL 23

LSR 23

MAC 44, 60

Master Stack Pointer 64

Master Stack Processor 62

Memory-indirect post-indexed 22

Memory-indirect pre-indexed 22

Metrowerks 41

Microtec 41

Microtec Research 43

MMUSR 64

Mnemonics 44

Modifying Registers 61

MOVE from CCR 24

MOVE to CCR 24

MOVE16 22-24

MOVEC 33, 64-65

MOVEM.W 23-24, 36

MOVEP 22

MOVES 22, 63

MSP 33, 62, 64

MULS 10, 22, 26, 71

MULS.L 25, 71

Multiply 72

MULU 22, 26, 71

MULU.L 25, 71

MVS 27, 44

MVZ 27

NBCD 22, 44

NEG 23

NEGX 23

NOT 23

Nterrupt Stack Pointer 62

Operating System 32

ORI to CCR 22-23

Out_cmp_reversed 44

Out_syntax 45

Overflow 10, 26, 71

PACK 22

PC Displacement 21

PC Indexed 21

PC-indirect post-indexed 22

PC-indirect pre-indexed 22

Post-increment 21

PowerPC 20

Pre-decrement 21

Privilege violation 35

Problem Instructions 63

Program Counter 55, 62

77 CF68KLib Emulation Library

Register Parameter Area 53

RESET 22

RISC 20

ROL 22

ROR 22

ROXL 22

ROXR 22

RTD 22, 31

RTE 10, 32-33

RTM 22, 63

RTR 22

Sample code 13

SBCD 22, 44

Scale factor 21

Scc 23

SFC 64

Signed divide 25, 71

Signed multiply 25, 71

Source Function Code Register 64

SRP 64

SSP 33, 62

Stack pointer 26-27, 32, 71

Stack Pointer 62

Status Register 55

SUB 23

SUBA 23

SUBI 23

SUBQ 23

SUBX 23

Supervisor Mode 9, 41-42

Supervisor Mode Instructions 32

Supervisor Mode Library 10

Supervisor programming model 27

Supervisor Stack Pointer 55, 62

Supported Processors 11

TAS 22, 63

TBLS 22

TBLSN 22

TBLU 22

TBLUN 22

TC 64

Trace 62

TRAP 10, 32, 62

TRAPcc 22, 62

TRAPCC 60

TRAPV 22, 60, 62

TST 23

Unaligned memory accesses 11

Unimplemented Instructions 31

UNPK 22

Unsigned divid 25, 71

Unsigned multiply 25, 71

URP 64

User Mode 9-10, 41-42

User Stack Pointer 62, 64

USP 33, 62, 64

Variable-Length RISC 20

VBR 64

Vector Base Register 55, 64

Version 3 core 12-13, 24, 41-42, 63

Version 4 core 12-13, 19, 23-24, 27, 41-42, 63

Virtual machine 10, 54

78 CF68KLib Emulation Library

Word-length index 21

Zero-suppressed registers 21

–core 27, 42

–frontend option 42

–lib option 42

79 CF68KLib Emulation Library

	Introduction
	Understanding CF68KLib
	What is different in ColdFire?
	Principles of CF68KLib's Operation

	Using CF68KLib
	Creating the Source of CF68KLib
	Using CF68KLib
	Handling Problematic Instructions

	Index

